Abstracts – Browse Results

Search or browse again.

Click on the titles below to expand the information about each abstract.
Viewing 16 results ...

Bao, F, Chen, C, Chan, A P, Martek, I and Shrestha, A (2019) Dynamic framework transfer model for public–private partnerships. Engineering, Construction and Architectural Management, 26(07), 1218–39.

Chen, C, Tang, L, Hancock, C M and Zhang, P (2019) Development of low-cost mobile laser scanning for 3D construction indoor mapping by using inertial measurement unit, ultra-wide band and 2D laser scanner. Engineering, Construction and Architectural Management, 26(07), 1367–86.

  • Type: Journal Article
  • Keywords: Construction; Case study;
  • ISBN/ISSN: 0969-9988
  • URL: https://doi.org/10.1108/ECAM-06-2018-0242
  • Abstract:
    The purpose of this paper is to introduce the development of an innovative mobile laser scanning (MLS) method for 3D indoor mapping. The generally accepted and used procedure for this type of mapping is usually performed using static terrestrial laser scanning (TLS) which is high-cost and time-consuming. Compared with conventional TLS, the developed method proposes a new idea with advantages of low-cost, high mobility and time saving on the implementation of a 3D indoor mapping. Design/methodology/approach This method integrates a low-cost 2D laser scanner with two indoor positioning techniques – ultra-wide band (UWB) and an inertial measurement unit (IMU), to implement a 3D MLS for reality captures from an experimental indoor environment through developed programming algorithms. In addition, a reference experiment by using conventional TLS was also conducted under the same conditions for scan result comparison to validate the feasibility of the developed method. Findings The findings include: preset UWB system integrated with a low-cost IMU can provide a reliable positioning method for indoor environment; scan results from a portable 2D laser scanner integrated with a motion trajectory from the IMU/UWB positioning approach is able to generate a 3D point cloud based in an indoor environment; and the limitations on hardware, accuracy, automation and the positioning approach are also summarized in this study. Research limitations/implications As the main advantage of the developed method is low-cost, it may limit the automation of the method due to the consideration of the cost control. Robotic carriers and higher-performance 2D laser scanners can be applied to realize panoramic and higher-quality scan results for improvements of the method. Practical implications Moreover, during the practical application, the UWB system can be disturbed by variances of the indoor environment, which can affect the positioning accuracy in practice. More advanced algorithms are also needed to optimize the automatic data processing for reducing errors caused by manual operations. Originality/value The development of this MLS method provides a novel idea that integrates data from heterogeneous systems or sensors to realize a practical aim of indoor mapping, and meanwhile promote the current laser scanning technology to a lower-cost, more flexible, more portable and less time-consuming trend.

Chen, K and Lu, W (2019) Bridging BIM and building (BBB) for information management in construction. Engineering, Construction and Architectural Management, 26(07), 1518–32.

Cui, Z, Liu, J, Xia, B and Cheng, Y (2019) Beyond national culture difference. Engineering, Construction and Architectural Management, 26(07), 1476–97.

Khattak, M S and Mustafa, U (2019) Management competencies, complexities and performance in engineering infrastructure projects of Pakistan. Engineering, Construction and Architectural Management, 26(07), 1321–47.

Leung, M, Famakin, I O and Wang, C (2019) Developing an integrated indoor built environment–quality of life model for the elderly in public and subsidized housing. Engineering, Construction and Architectural Management, 26(07), 1498–517.

Liu, N, Ruan, L, Jin, R, Chen, Y, Deng, X and Yang, T (2019) Investigation of individual perceptions towards BIM implementation-a Chongqing case study. Engineering, Construction and Architectural Management, 26(07), 1455–75.

Nasirzadeh, F, Carmichael, D G, Jarban, M J and Rostamnezhad, M (2019) Hybrid fuzzy-system dynamics approach for quantification of the impacts of construction claims. Engineering, Construction and Architectural Management, 26(07), 1261–76.

Olatunji, O A (2019) Promoting student commitment to BIM in construction education. Engineering, Construction and Architectural Management, 26(07), 1240–60.

Salama, T and Moselhi, O (2019) Multi-objective optimization for repetitive scheduling under uncertainty. Engineering, Construction and Architectural Management, 26(07), 1294–320.

Sun, H, Wang, Y and Meng, J (2019) A trading and pricing method of expansion options for BOT freeway projects in China. Engineering, Construction and Architectural Management, 26(07), 1406–23.

Tayeh, B A, Hallaq, K A, Zahoor, H and Al Faqawi, A H (2019) Techniques and benefits of implementing the last planner system in the Gaza Strip construction industry. Engineering, Construction and Architectural Management, 26(07), 1424–36.

Uusitalo, P, Seppänen, O, Peltokorpi, A and Olivieri, H (2019) Solving design management problems using lean design management: the role of trust. Engineering, Construction and Architectural Management, 26(07), 1387–405.

Wang, Y and Jin, X (2019) Determine the optimal capital structure of BOT projects using interval numbers with Tianjin Binhai New District Metro Z4 line in China as an example. Engineering, Construction and Architectural Management, 26(07), 1348–66.

Yu, J, Ma, G and Cai, S (2019) Disparities in the provision of aging-friendly communities in old and new urban neighborhoods in China. Engineering, Construction and Architectural Management, 26(07), 1277–93.

Zhang, J, Xie, H and Li, H (2019) Improvement of students problem-solving skills through project execution planning in civil engineering and construction management education. Engineering, Construction and Architectural Management, 26(07), 1437–54.